InterProlog: a declarative Java-Prolog interface

Miguel Calejo

Declarativa
R. Cerca 88, 4150-200 Porto, Portugal

mc@declarativa.com
Abstract

Declarativa's InterProlog is a library allowing the development of combined Java+Prolog applications. Java and Prolog developers can symmetrically and dynamically invoke predicates and procedures with bi-directional object/term conversion based on the underlying combination of Java's built-in data-driven Serialization API with a Prolog Definite Clause Grammar. The result has been used in both academic and commercial scenarios, and in server and desktop environments. The current GPL-licensed version is based on TCP/IP sockets; there is also a proprietary Java Native Interface implementation, offering the same core functionality but with significant performance gains.

Keywords: Java, Prolog, declarative, GUI, integration, grammar, remote procedure calls

1 Introduction

Logic programmers need a second language; the world simply isn't totally declarative. Unless you're willing to ignore that, or to stick to heavy weight Prolog environments providing all sorts of operational OS/GUI/DB primitives, typically funded out of exotic economic or academic niches, it's obvious a second language is needed to make projects useful and complete. This is due to both technical and economical reasons. Logic programming foundations still shake occasionally for the good, and we should leave the door open for innovation (e.g., enhanced proof procedures, higher-level languages etc); and maintenance and integration costs are a factor advising careful choice of tools. In other words, Prolog environment implementation work is (perhaps) better focused on intrinsic declarative engine issues, delegating other problems elsewhere.

Looking at the other side, (perhaps) the software world does not need yet another specialized logic inference engine implemented on Java, C++, LISP or whatever each time logic gets used in the real world, and might instead reuse nearly three decades of logic programming R&D.

Fortunately Java, arguably the emerging language of choice in many "real world contexts", constitutes an excellent platform for this scenario. Java is multi-platform, object-oriented, dynamic, heavily adopted. InterProlog is an attempt at capitalizing on this opportunity, taking full advantage, among others, of Java's Reflection and Serialization APIs. Reflection allows arbitrary messages to be sent to Java from Prolog, without any specific need for Java programming. Serialization provides a uniform and open mechanism to exchange data between both, by having Java sending and receiving from Prolog serialized byte streams representing Java object state.

InterProlog is a Java front-end and functional enhancement for standard Prologs, running on both Windows and Unix, and currently supporting XSB Prolog (http://xsb.sourceforge.net/). It is implemented as a set of standard Java classes and Prolog predicates, and is available under the terms of the GNU Library License from http://www.declarativa.com/interprolog. It provides Prolog with the ability to call any Java method, and for Java to invoke Prolog goals, by using a communication layer based on standard TCP/IP sockets to pass object/term data among both processes:

[image: image1.png]
Another proprietary version offers the same functionality (except for I/O redirection) but based instead on direct JNI integration.

The InterProlog system was partially and briefly overviewed in [Calejo 98], and mentioned in a previous survey [Calejo 99]; it elaborates on ideas previously explored in a C++ context in [Soares Calejo 97], and in [Calejo Sousa 97]. The evolution of Java as a dynamic language opened the door to the articulation of Java Serialization [Sun 97] with Prolog Definite Clause Grammars:

[image: image2.wmf]Stream bytes

InterProlog

Object

Grammar

object(class(...),...data)

JAVA

Serialization

API

Object network

in memory

Prolog

Term

InterProlog also provides a simple graphical front-end to Prolog using Java's basic subprocess-handling capabilities, by running it under a separate process and redirecting its STDIO to listener objects, such as a Java window.

2 A first tour

In order to illustrate InterProlog at work, we’ll examine different ways of having a Java+Prolog program saying “Hello World” to an user watching a Java GUI; there will be other examples in a later section. For each “flavor” we’ll see both the Prolog and Java side of the solution, together with some comments.

2.1 Prolog shell oriented

You’ve used Prolog through a textual shell interface before, and you want to be sure most things stay the same. Basically, they do:

[image: image3.png]
What was done:

	Java side
	Prolog side

	No explicit Java programming
	write(‘Hello, world’), nl.

	TopLevelWindow lets you type the Prolog goal, and displays its output.
	Just an ordinary top goal.

2.2 Java shell oriented

Although not used for regular applications, the Java console is many times used to debug or test. Let’s therefore use InterProlog to let Prolog show output on the Java console, by sending a direct message to System.out:

[image: image4.png]
The shell where the Java machine was launched should now show something like:

[image: image5.png]
What was done:

	Java side
	Prolog side

	No explicit Java programming
	javaMessage('java.lang.System'-out,
 println(string('Hello World!'))
).

	PrologEngine offers a generic callback service to Prolog
	Any message can be sent to any Java object. Java classes must be referred by their full names, including their package.

2.3 For the GUI front-end developer

Now for a friendlier “Hello World” implementation: Java will provide the GUI, but Prolog will provide the event handling/processing capability. First, let’s write a class for a window with a text field to show the “Hello World” message, and with a button so the user can ask for that to happen:

[image: image6.png]
The event handling setup code uses an anonymous inner class instance to handle the button events in typical Java fashion. When the user clicks the button an actionPerformed() message will be sent to the event handler object, which will react by sending a deterministicGoal() message to the PrologEngine that was passed in the HelloWindow constructor (alternatively the HelloWindow class might create its own PrologEngine instance dispensing with the constructor argument).

In order for Prolog to be able to later reference the already existing text object on the Java side, we’re registering it in the PrologEngine’s referred object table, getting an "invisible reference". Invisible signifying that the text object will NOT be serialized to the Prolog side, only a reference to it will. The makeInvisible() method returns an InvisibleObject instance, which is an InterProlog wrapper object for this type of situation.

The following Prolog goal creates a HelloWindow:

?-ipPrologEngine(_Engine), javaMessage('com.declarativa.interprolog.examples.HelloWindow','HelloWindow'(_Engine)).

ipPrologEngine is a predicate returning a Prolog representation of the PrologEngine (Java object) wrapping it - again an InvisibleObject. Here's how the window will look:

[image: image7.png]
Finally, here’s the Prolog code needed to handle the event and actually greet the user, by changing the contents of the TextField object:

assert((greetat(_Text) :- javaMessage(_Text, setText(string('Hello world!'))))).

The window will now function as expected when its button is clicked:

[image: image8.png]
The figure shows the control flow since the user clicks the button up to the text field is changed:

[image: image9.wmf]a

JButton

actionPerformed()

a

PrologEngine

deterministicGoal(

greetat(

Text_Reference))

a

CallbackHandler

a

JTextField

setText("

Hello world

")

greetat(T) :-

javaMessage(

T,string('

Hello world!'

))

an

ActionListener

CallBackHandler is an InterProlog class handling Prolog->Java messaging.

Had we forgotten to define predicate greetat/1, hitting the "Greet" button would cause an undefined predicate error on the Prolog side. This would be detected by PrologEngine, throwing a Java exception, that would be seen printed out on the shell window by the Java VM (as we didn't bother to catch it in the actionPerformed method):

[image: image10.png]
In general Prolog anomalies map into the throwing of Java exceptions. Finally, here’s a summary of this version of “Hello world”:

	Java side
	Prolog side

	A window class (HelloWindow) defining appearance, together with an event handler (anonymous) class relaying the event to Prolog as a goal
	A message was sent to the HelloWindow class constructor, to create a window instance:

?-ipPrologEngine(_Engine), javaMessage('com.declarativa.interprolog.examples.HelloWindow','HelloWindow'(_Engine)).
A predicate was defined, handling the event message from Java, and calling back Java to change the text object:

greetat(TextID):-javaMessage(TextID,setText(string('Hello world!'))).

	In pre-JDK 1.1 days an additional (non-anonymous) class would also be needed, to define the event-handling behavior
	The PrologEngine object that launched Prolog is available through ipPrologEngine. A constructor method can be called directly from Prolog through javaMessage, like any other method, by using the class as target.

3 InterProlog principles: perspective from Prolog

3.1 Prolog as usual

InterProlog can be used as the underlying Prolog would be used in a conventional setting. After launch a Java window appears as seen in the tour above, with two panes: the top shows all output (stdout and stderr) from Prolog; the bottom is an editable text field which is sent to Prolog’s input (stdin) after hitting the Enter key. All Prolog built-ins continue available, such as file I/O etc., because Prolog is still running as usual; only its input/output streams where redirected to the window object.

In addition to the Java window there may be another window open with the operating system (Windows, Unix) shell environment from where the Java virtual machine was invoked. Output appearing in that window is not originated from Prolog, it constitutes instead Java’s System.out console, where typically Java debugging messages may appear.

We next lay down the basics for Prolog-Java messaging.

3.2 Java serializations vs. object specifications in Prolog

Each language has its basic datum: objects in Java, terms in Prolog. First let's look at Java Serialization. Let's say a programmer writes the following Java fragment (omitting exception handling here for simplicity):

Integer object = new Integer(13); // wrapper object for int
ObjectOutputStream oos = new ObjectOutputStream(somestream);
oos.writeObject(object);

In addition to a small "administrative" data preamble, the above would pipe the following bytes onto 'somestream':

172,237,0,5,115,114,0,17,106,97,118,97,46,108,97,110,103,46,73,110,116,101,103,101,114,18,226,160,164,247,129,135,56,2,0,1,73,0,5,118,97,108,117,101,120,114,0,16,106,97,118,97,46,108,97,110,103,46,78,117,109,98,101,114,134,172,149,29,11,148,224,139,2,0,0,120,112,0,0,0,13

These bytes include a reference to the Integer and another class it depends on, plus data structure and basic type (int) content (but more on this below). Objects that are more complex are handled by transitively serializing their whole object reference graph, without repeating objects.

Another Java program opening an object stream on the same byte stream (say through sockets or some buffer structure) could recover the serialized object simply with:

ObjectInputStream iis = new ObjectInputStream(otherSideOfAboveStream);
Object recovered = iis.readObject(); // recovered instanceof Integer (
Now, if instead of a Java program we place a Prolog program on the other side… we get a regular mechanism to recognize and specify Java objects in Prolog. So InterProlog is based on the use of standard Serialization on the Java side, and on a Definite Clause Grammar on the Prolog side, implementing Java's Object Serialization Stream Protocol, as defined in chapter 6 of [Sun 97].

The grammar top nonterminal/predicate is streamContents(C,Handles,Bytes,BytesN). The arguments are C for a list of (term) representations of serialized objects, Handles for a term carrying repeated object information, and the usual (terminal) difference list. Here's the result of using it on the above serialized bytes, with some indentation added:

?-streamContents([IntegerObject],_,[172,237,0,5,115,114,0,17,106,97,118,97,46,108,97,110,103,46,73,110,116,101,103,101,114,18,226,160,164,247,129,135,56,2,0,1,73,0,5,118,97,108,117,101,120,114,0,16,106,97,118,97,46,108,97,110,103,46,78,117,109,98,101,114,134,172,149,29,11,148,224,139,2,0,0,120,112,0,0,0,13],[]).

IntegerObject=object(
 class(java.lang.Integer,long(4834,-24412,-2175,-30920),
 classDescInfo([int(value)],2,
 class(java.lang.Number,long(-31060,-27363,2964,-8053),
 classDescInfo([],2,null)))),
 [] + [] + [13]);

The term bound to IntegerObject is the result of parsing, and constitutes an object specification. Notice that it has a part dependent on the Integer class per se (such as the fact that it has a super class Number, an instance variable 'value' with type int, etc.), and another on the class instance (such as the value 13 in the object's only instance variable). So the grammar is able to both parse a sequence of bytes representing a serialized object into a Prolog term representing/specifying it, and vice-versa: given an object specification term, it is able to produce a sequence of bytes such that the standard Java Serialization process can recreate the object.

As can be appreciated above, serialized objects include some information necessary to be self-contained, which may not be relevant to the Prolog developer. Therefore InterProlog provides higher level predicates to build and analyze object specifications, described in the next section; for example, the above Integer object could be built and analyzed with the InterProlog predicate ipObjectSpec(Class, VarValues, ObjectSpecification) as follows:

 ?-ipObjectSpec('java.lang.Integer',[value=13],IO), ipObjectSpec('java.lang.Integer',[value=V],IO).

IO=object(class(java.lang.Integer,long(4834,-24412,-2175,-30920),classDescInfo([int(value)],2,class(java.lang.Number,long(-31060,-27363,2964,-8053),classDescInfo([],2,null)))),[] + [] + [13])

V = 13

The first sub goal builds an object specification for an Integer object with instance variable containing 13, the second peeks into the object (specification; all this is happening on the Prolog side).

3.3 Specifying and analyzing Java objects in Prolog

We now introduce the template-based InterProlog facility that enables building objects from term specifications, based on some minimal information provided explicitly by the Java programmer.

But first, let's argue the need for such a facility. Couldn’t we simply build objects from Prolog by invoking a constructor through javaMessage(), and setting their internal state through the Reflection API ? Sometimes, yes, as will be seen later. However, it may not be convenient to have the Prolog programmer explicitly calling every constructor variant, or providing elaborate sequences of setup messages.

Therefore we aim to make the Prolog programmer’s life easier, as long as he/she gets his/her hands on object examples, that will act as prototypes. These are sent once to the Prolog side, as will be seen below on the Java side description.

The InterProlog template-based facility is available through a choice of alternative predicates, which are generated based on (serialized object) examples sent once from the Java side at startup, and which should be used to specify, on the Prolog side, objects of the respective classes.

	ipObjectSpec(
 Name,G,Vars, examples-[SubstA,SubstB]/ANames
)
	One such fact is made available for each ObjectExamplePair(Name,A,B) instance that the Java programmer sent to Prolog, either on startup or later through teachMoreObjects(); Name is the name of the class as given by the Java programmer; objects A and B are compared, producing a generalizing object (specification) G plus variable list Vars, that if bound to either SubstA or SubstB would become A or B resp. For the meaning of ANames see ipObjectTemplate

	ipObjectTemplate(Name,Template,ANames,TVars,TSubs)
	One such fact is made available for each ObjectPairExample(Name,A,B) instance that the Java programmer sent to Prolog, either on startup or through teachMoreObjects(); object A is analysed, and all variables in its class description are replaced by logic variables, collected in TVars, with values collected in TSubs; the resulting object specification is Template; binding TVars to TSubs would make Template = A; the variable types(names) are collected in ANames.

	ipObjectSpec(ClassName,VarsValues,Object)
	(dependent on ipObjectTemplate)

If Object is a variable, bind it to an object specification similar to the prototype/example given for the class except for the differences in VarsValues; otherwise VarsValues will be bound to the differences between Object and prototype.

If the class is an array, VarsValues will be a list simply with the array values. Otherwise VarsValues is a list [VarName1=Value1, ..., VarNameN=ValueN]. Each VarName must be an atom, the name of a Java instance variable of the class

Each Value must be compatible with the corresponding object field; this is only partially checked, as not all information is available on the Prolog side

Why do we need both ipObjectSpec and ipObjectTemplate? They’re partially redundant alternatives and all require an awareness of what are the Java class instance variables.

The first, ipObjectSpec/4, allows a Java programmer to provide 2 prototypes that differ in just that part of internal state which is relevant for Prolog, and which may become easier to parameterize. The second, ipObjectTemplate/5, makes all Java variables explicit to Prolog, which may be more convenient if both Java and Prolog code are being written alongside.

The third, ipObjectSpec/3, may be the simpler to use and basically subsumes the second, and is definitely more robust regarding class (instance variable) changes, as long as they’re not referred in VarsValues.

In any case, all three predicates are available, for every object example given by Java.

3.4 Object specification varieties

An object specification corresponds to the blueprint for a new object instance on the Java side. What if we wish to refer to an existing object, rather then to create a new one? Or what if we want to pass as argument to javaMessage() a Java basic type such as int, rather than an object?

These and other cases are treated by special InterProlog Java code, together with a set of “special” object specifications; these are enumerated in the table below, which tells what ipObjectSpec call should be used to produce each one:

	Object/data specification variety
	InterProlog predicate to use

	Object X should be the object already existing and registered as (int) ID on the Java side
	ipObjectSpec(‘InvisibleObject’,X,[ID],_)

	X is the class object for class with name C
	ipObjectSpec(‘IPClassObject’,X,[C],_)

	X is the class variable V of class C
	ipObjectSpec(‘IPClassVariable’,X,[C,V],_)

	X is a boolean basic type for B (which should be 1 or 0); similar ipObjectSpec facts are available for the remaining basic types: byte, small, int, long, float, double, char
	ipObjectSpec(boolean,X,[B],_)

	New String object with string Atom
	None necessary, simply use string(Atom)

	New object X of class C
	ipObjectSpec(C,X,Variables,_)

	A reference to the PrologEngine object that launched this Prolog process.
	ipPrologEngine(E)

Strings are the only objects that map directly to a Prolog data type (atom), and thus have a simpler object specification. A priori, Java numbers could also have a simple mapping to Prolog numbers, however there are more varieties of numbers in Java than in Prolog, and so it is necessary to use the object specifications above.

3.5 Emergence of an API: how to message what

As Prolog programmers interested in using Java’s facilities, we need a way to message Java objects and get back results or some work done. By using the above mechanism to specify objects we can define a “glorified remote procedure call”, giving access to any Java public method:

	Predicate
	Description

	javaMessage(Target,Result,Exception,MessageName,ArgList,NewArgList)
	Synchronously sends a message to Java object Target, waiting for its Result, catching any Exception that may occur. There are sugared versions below. In any case, arguments in ArgList must be of the proper Java-compatible types, in the form of object specifications. NewArgList contains the same objects in ArgList after the message is processed, possibly reflecting state changes.
The messages available are those documented as public methods on the Java classes being used.

	javaMessage(Target,Result,Message)
	Same as javaMessage/6, but accepts the Message in methodName(arguments) format, neglects the new state of the arguments, and treats some Target cases, avoiding the need for common object specifications (accepting simpler forms): object reference (integer), class object (atom), and class variable (class-variable term)

	javaMessage(Target,Message)
	Same as javaMessage(Target,_,Message)

For example, the following goal succeeds:

?- ipObjectSpec('java.lang.Integer',[value=255],_V), javaMessage(_V,string(S),toString), atom(S).

S = 255

Obviously, we do not want to always pass around objects between Prolog and Java; many times, we just need to refer them. javaMessage thus returns object references
 rather then (specifications of) object copies. For example, the following will create and display a window without serializing it to Prolog:

?- javaMessage('javax.swing.JFrame',R,'JFrame'(string(‘My window title’))), javaMessage(R,show).

R = object(class(com.declarativa.interprolog.util.InvisibleObject, long(9178,4980,26889,-14802), classDescInfo([int(ID)],2,null)),[] + [1])

Object references are implemented by encapsulating (the integer denoting them) within instances of a dedicated InterProlog class, InvisibleObject.

3.6 Representing complex terms on the Java side: TermModel
The previous discussion is definitely Java-oriented, in that it concerns on how to analyse and build Java objects; what if we simply want to pass to Java a representation of a Prolog term?

InterProlog includes TermModel, a Java class implementing a tree capable of representing a Prolog term. Java tree nodes map to Prolog term nodes, Java's toString() to Prolog's write, and the tree structure is made very easy to represent graphically by having TermModel implement the Java Swing TreeModel interface.

For example, after goal ?- browseTerm(f(a(X),X,123,b(c))) and a few node expanding clicks by the user, the following window appears:

[image: image11.png]
Notice how a regular Prolog write, following the standard Edinburgh syntax, is used on the non-expanded nodes, courtesy of TermModel's toString() method.

Dual Prolog predicates are available to build / analyse TermModel object specifications from / to Prolog terms: buildTermModel(Term,ObjectSpec) / recoverTermModel(ObjectSpec,Term).

3.7 Additional primitives

Based on the previous primitives and some simple Java classes the following are available to the Prolog programmer:

	Predicate
	Description

	buildTermModel(Term,TermModel) / recoverTermModel(TermModel,Term)
	Builds/recovers an object specification for a TermModel instance representing Term; used by browseTerm or any code that needs to pass a full Prolog term to Java. Prolog variables are mapped into numbered instances of a dedicated Java class, VariableNode.

	browseTerm(Term)
	Creates a window with an outline (JTree) browser for Term.

	browseList(List)
	Creates a window with a JList browser on List. Double-clicking on items creates a term browser window.

	browseTreeTerm(Tree)
	Creates a window with a multi-pane hierarchical browser for Tree; this is assumed to be represented by some (dummy) functor with arity 2 or larger; the first argument is considered the node, the second a children list. The tree must have depth 2 or larger.

	browseLiteralInstances(GroundTerm,Instances)
	Creates a window with a JTable showing a set of similar terms.

For example, goal ?- browseLiteralInstances(country(name,continent), [country(usa,america), country(portugal,europe), country(spain,europe), country(canada,america)]) creates the following window:

[image: image12.png]
All the above visualization primitives pass data to the Java side eagerly (one-shot), to avoid Java/Prolog calls; graphical visualization of large data structures in general requires more complex strategies, see Future Work section.

4 InterProlog principles: Perspective from Java

InterProlog allows a Java programmer to use Prolog encapsulated in a Java object, a PrologEngine instance. PrologEngine may be used at different levels of sophistication, by resorting to simple textual communication or to structured objects; we’ll now describe them, together with the relevant methods of the PrologEngine class, moving from trivial to more sophisticated.

4.1 No explicit interaction from the Java side

Even without explicit Java programming, there may Prolog (Java interaction through the javaMessage predicate as illustrated earlier. The callback service is activated by PrologEngine, runs transparently in a Java background thread and requires no explicit setup.

4.2 Interacting via unstructured text

For simple applications like the InterProlog Prolog listener window, it is sufficient to communicate with Prolog using plain text. Some relevant PrologEngine methods are:

	PrologEngine(XSBstartCommand)
	Launches the given Prolog executable. Multiple class instances will cause multiple Prolog processes to be launched

	addPrologOutputListener(PrologOutputListener client)
	causes the client to later receive the messages described in the PrologOutputListener interface -promptWasOutput(), print(String) - which constitute a slightly higher level of information than the raw bytes coming over Prolog’s output

	sendAndFlush(String s)
	sends some text to Prolog’s stdin, such as a top goal in string form

	interrupt(), shutdown()
	respectively simulate a ctrl-c and terminate the Prolog process

4.3 Interacting at a higher level

If a Java application actually wishes to get some data to or back from Prolog in a controlled manner, and/or specific Java code is written to support a Prolog project, then in addition to the previous PrologEngine methods others become relevant:

	teachMoreObjects(ObjectExamplePair[] examples)
	Sends an array of object example pairs to Prolog, in order to automatically produce further ipObjectSpec/ipObjectTemplate facts

	Object makeInvisible (Object x)
	Registers an object with this PrologEngine and returns an InvisibleObject, which can later be used on the Prolog side to refer to x without serializing it

	boolean isAvailable()
	Returns true iff Prolog is believed to be not busy

	Object[] deterministicGoal(String G, String OVars, Object[] objects, String RVars)
	Calls Prolog goal G, passing it an array of objects whose specifications will be bound to the corresponding variables in list OVars, and returning objects created according to the list of object specifications in RVars. Typically OVars and RVars will share variables with G. The number of elements of RVars determines the length of the returned (object) list. Returns null if G fails. There are simpler varieties of deterministicGoal that are special cases of the above, that omit object transfer in either direction

	consultFromPackage(String filename, Object requester)
	Extracts a Prolog file from the jar file or directory where the requester's class came from into a temporary file, and asks Prolog to reconsult it

Until present we’ve refrained from introducing a (nonDeterministic)goal method, which might appeal to logic programmers but which in our view has not proven essential, as many situations can be dealt with an Prolog findall type approach. Say you wanted to collect all solutions of G, retaining sub term T bindings:

String G = "(X=a;X=b)";

String T = "X";

String GG = "findall(TM, ("+G+",buildTermModel("+T+",TM)), L), ipObjectSpec('ArrayOfObject',L,LM)";

Object[] solutions = (Object[])engine.deterministicGoal(GG,"[LM]")[0];

System.out.println(“Number of solutions:”+solutions.length);

for(int I=0;I<solutions.length;I++)

System.out.println(“Solution “+I+”:”+solutions[I]);

// solutions will contain TermModels for ‘a’ and ‘b’
4.4 Another example

The following is extracted from InterProlog's JUnit-based test suite (see http://www.junit.org/). It's a code fragment illustrating how one can define a Java class (inner class ConfigurationItem) to act mainly as a data structure, and then use it to pass structured data from Prolog to Java:

public static class ConfigurationItem implements java.io.Serializable{

String feature,value;

public String toString(){

return "FEATURE "+feature+" HAS VALUE "+value;

}

}

public void testXSBstuff(){

engine.teachOneObject(new ConfigurationItem());

String g = "F=install_dir, findall(Obj, (xsb_configuration(F,V), ";

g+= "ipObjectSpec('com.declarativa.interprolog.PrologEngineTest$ConfigurationItem',”;

g+= “[feature=string(F),value=string(V)],Obj)";

g += "),L), ipObjectSpec('ArrayOfObject',L,Array)";

Object[] items = (Object[])engine.deterministicGoal(g,"[Array]")[0];

ConfigurationItem item = (ConfigurationItem) items[0];

assertTrue(AllTests.startCommand.indexOf(item.value)!=-1);

}

First, a setup method will execute engine = new PrologEngine(XSBpath). When testXSBStuff() runs it starts by sending a ConfigurationItem instance to the Prolog side, to serve as a prototype. Then String g is prepared with a goal that finds all XSB Prolog configuration items (for the test, only the install directory…), collects them as a list of ConfigurationItem object specifications (which by the way will have one item), uses the InterProlog prototype for Object[] (conveniently called ArrayOfObject), and binds the resulting object to the Array variable, that is serialized back to Java.

(The actual test is simply on whether the XSBpath is consistent between XSB Prolog and the PrologEngine.)

5 Application architecture suggestions

There are many possibilities to architect InterProlog-based systems. Knowledge about the application may reside more on the Java or Prolog side, depending on each projects’ technological bias.

For GUI-intensive (sub)projects, and borrowing some practices common in Object-Oriented Programming, a promising guideline is as following: adopt a view/document partition of your data. Let Prolog know about “deep” data representation, and let Java handle front-end events, appearance, editing etc. The Java Foundation Classes (JFC, “Swing”) provide a natural framework to practice this, as we did for several of the examples accompanying InterProlog, such as all the visualization predicates.

For example, the InterProlog Prolog term browser is made of several parts:

· The TermModel class, which represents in Java a Prolog term tree, and which knows also how to respond to the messages defined in the (JFC) TreeModel interface

· buildTermModel(T,M), the InterProlog predicate that builds a TreeModel object specification M from a given term T

· The TermModelWindow class, a window which contains a JFC JTree object using a TermModel as its TreeModel, to whom it asks for data to display

The Prolog part only specifies the TermModel; it knows nothing about user events, drawing etc. – that responsibility is given to the Java parts.

This approach is consistent with another important practical guideline: minimize the number of Java-Prolog context switches cf. performance comments on Notes on Implementation below. Depending on the particular application demands and its architecture for data refreshing on the GUI, the overhead of Java/C switching per si may become significant (meaning, even in a JNI implementation; it definitely is in our current socket implementation!). So it's a good practice to keep Java-Prolog traffic as low as reasonable.

6 Conclusion

6.1 Applications

In addition to use by several universities around the world, InterProlog is the lower layer infra-structure for our own development of GUI front-ends to existing Prolog applications, namely a Prolog-based Swing GUI prototyping system being developed for a commercial customer.

6.2 Notes on implementation, limitations

The InterProlog grammar follows the Object Serialization Stream Protocol [Sun 97] very closely. Repeated Java objects map into the same Prolog sub term, so graphs with loops may later cause Prolog to loop, such as when attempting to write (or otherwise visiting without occur-checking) such an object specification.

Peeking into serialized object state may break the intended Java visibility rules, because all but transient fields are serialized: even private fields are visible on the Prolog side; this of course only for classes declared to be Serializable, and as long as there are public methods returning instances of them which Prolog could use to do the peeking.

A Java class version id is included in the information serialized, and so it is possible to write Prolog code that depends on a particular class version if so intended, by fixing the long value within an object’s specification class sub term; we have however not explored this further.

javaMessage and deterministicGoal method/goal calls are implemented with the help of a few simple additional classes: GoalFromJava, ResultFromProlog, MessageFromProlog, and ResultFromJava. Whenever a Java<->Prolog call occurs a complementary pair of instances of these classes is serialized from each endpoint, with instance variables including method names, arguments, exceptions thrown etc.

The current socket-based implementation is slow; on a 400MHz Pentium each Java-Prolog call takes around 200mS on Windows 98, and only 14k serialized bytes/second flow. We've initiated an implementation of the lower layer using the Java Native Interface (http://java.sun.com/j2se/1.3/docs/guide/jni/index.html), and based on preliminary testing we expect a speed gain of at least two orders of magnitude.

6.3 Comparison with other systems

The Java Reflection and Serialization mechanisms, together with Prolog’s natural strengths, are used in InterProlog to give the combination a level of flexibility and dynamism previously found only in environments based on interpreted languages. To the best of our knowledge no other Java/Prolog interface currently includes a powerful and concise data transfer capability comparable to what object serialization gives InterProlog, although in principle it would be possible to add a simple layer on existing interfaces to support it.

Performance wise InterProlog is bad because of the socket-based implementation; this defect should go away with our upcoming JNI implementation. The reader is encouraged to overview the existing Java/Prolog interfaces referred in [Calejo 2001], or in the survey included in [Morozov et al. 99].

6.4 Future Work

With the upcoming JNI implementation the core InterProlog class PrologEngine will evolve into three classes. AbstractPrologEngine will be an abstract class providing common functionality, with two subclasses: SubprocessEngine, using the current socket-based approach; and NativeEngine, JNI-based. Most Java programmers will typically depend only on a PrologEngine interface and the AbstractPrologEngine, and use SubprocessEngine for debugging (because it allows I/O capture, providing the simple Prolog listener window shown above) and NativeEngine for deployment.

The wiring of graphical event handlers can be made easier using a Java 1.3 feature, Proxy classes; this allows dynamic generation of event listener classes, and may have explicit support in InterProlog in the future.

7 Acknowledgments

This work was sponsored partly by the PROLOPPE (Praxis/3/3.1/TIT/24/94) and REAP (Fundação Luso-Americana para o Desenvolvimento) projects, as well as by Servisoft II, Servisoft and Declarativa (http://www.declarativa.com). Special thanks also to the XSB group at SUNY Stony Brook, for their encouragement, feedback and help. XSB, INC has supported InterProlog maintenance and improvements.

8 References

Calejo, M., Sousa, João, "Embedding Prolog in the Java Environment", in Procs. 2nd International Workshop on Logic Programming Tools for Internet Applications, Leuven 1997, http://www.clip.dia.fi.upm.es/lpnet/proceedings97/lpnet_proc97.html, July 30, 2001

Calejo, M., "InterProlog: A simple yet powerful Java/Prolog interface", in Compulog Magazine, European Network in Computational Logic, December 1998, http://www.cs.ucy.ac.cy/compulog/dec98update/mainframe.htm, July 30, 2001

Calejo, M., " Java+Prolog: A Land of Opportunities", in Procs. The First International Conference on The Practical Application of Constraint Technologies and Logic Programming, ISBN 1 902426 01 0, London 1999

Calejo, M., "Java+Prolog systems and interfaces", http://www.declarativa.com/interprolog/systems.htm, July 30, 2001

Morozov , A.A., Obukhov , Yu.V., Gulyaev , Yu.V., "On The Problem of Using Logic Object-Oriented Programming in the World Wide Web", in Proceedings of the Special Russian Session "The Internet Developments in Russia''. First IEEE/Popov Workshop on Internet Technologies and Services", Moscow, Russia 1999, http://www.cplire.ru/Lab144/internet.html, July 30, 2001

Soares, C., Calejo, M. "From Graphical Objects to Terms and Back: an Extended Application Framework for Prolog", in Procs. of the 8th Workshop on Logic Programming Environments, Leuven 1997, http://www.cs.usask.ca/projects/envlop/8WLPE/Proceedings.shtml, July 30, 2001

Sun Microsystems, (Java) "Object Serialization", 1997-99, http://java.sun.com/j2se/1.3/docs/guide/serialization/index.html, July 30, 2001

� Except for Strings and Java basic type wrappers

_1058000621.doc

a JButton

an ActionListener

actionPerformed()

a PrologEngine

deterministicGoal(greetat(Text_Reference))

a CallbackHandler

a JTextField

setText("Hello world")

greetat(T) :-

 javaMessage(T,string('Hello world!'))

