Optimization Services 2.4 User’s Manual

Horand Gassmann, Jun Ma, Kipp Martin, and Wayne Sheng
November 3, 2011

Abstract

This is the User’s Manual for the Optimization Services (OS) project. The objective of OS
is to provide a general framework consisting of a set of standards for representing optimization
instances, results, solver options, and communication between clients and solvers in a distributed
environment using Web Services. This COIN-OR project provides C++ and Java source code
for libraries and executable programs that implement OS standards. The OS library includes
a robust solver and modeling language interface (API) for linear, nonlinear and other types of
optimization problems. Also included is the C++ source code for a command line executable
0SSolverService for reading problem instances (OSiL format, nl format, MPS format) and
calling a solver either locally or on a remote server. Finally, both Java source code and a Java
war file are provided for users who wish to set up a solver service on a server running Apache
Tomcat. See the Optimization Services home page http://www.optimizationservices.org
and the COIN-OR Trac page http://projects.coin-or.org/0S for more information.

Contents

1 The Optimization Services (OS) Project

2 Quick Roadmap

3 Downloading the OS Project

3.1
3.2

3.3
3.4
3.5

4.1

4.2

4.3

Obtaining the Binaries L
Auxiliary Software for Working with the OS Project
3.2.1 Subversion (SVN)
3.2.2 wget ... e e
3.2.3 Windows development platform 000000
3.2.4 CH+4 compiler
3.2.5 Fortran Compiler
3.26 flexandbison
327 doxygen ... e
Obtaining OS Source Code Using Subversion (SVN)
Obtaining the OS Source Code From a Tarball or Zip File
Obtaining source for the OS Project API
4 Building and Testing the OS Project
Building the OS Project on Unix/Linux Systems
4.1.1 Building the OS Project on Mac OS X
Building the OS Project on Windows
4.2.1 Microsoft Visual Studio (MSVS)
4.2.2 Visual Studio Examples Distribution,
423 Cygwino
4.2.4 MIinGW e e
4.2.5 MSYS . .
VPATH Installations
COIN-OR Projects Requiring Fortran

4.4

4.5

4.6
4.7
4.8

4.4.1 Building Ipopt, Bonmin and Couenne in Unix or a Unix-like environment . .

4.4.2 Ipopt and Microsoft Visual Studio
Other Third-Party Software
4.5.1 AMPL Solver Library (ASL)
4.5.2 GLPK . . . o
4.5.3 Cplex
4.5.4 LINDO
4.5.5 MATLAB
4.5.6 Library Paths
Bug Reporting
Documentation L
Platforms e e

5 The OS Project Components

13
13
15
16
16
17
18
19
20
21
22
23
24
24
25
25
25
26
26
26
26
27
27

27

6 OS Protocols 31

6.1 OSiL (Optimization Services instance Language) 31
6.2 OSrL (Optimization Services result Language) 33
6.3 OSoL (Optimization Services option Language) 35
6.4 OSnL (Optimization Services nonlinear Language) 35
6.5 OSpL (Optimization Services process Language) 35

7 The OSSolverService 36
7.1 OSSolverService Input Parameters 36
7.2 The Command Line Parser 39
7.3 Solving Problems Locally L 39
7.4 Solving Problems Remotely with Web Services 41
7.4.1 The solve Service Method 41

7.4.2 The send Service Method, 44

7.4.3 The retrieve Service Method 45

7.4.4 The getJobID Service Method 46

7.4.5 The knock Service Method 46

7.4.6 The kill Service Method 48

7.4.7 Summary and description of the APT 49

7.5 Passing Options to Solvers 50

8 Setting up a Solver Service with Apache Tomcat 53

9 OS Support for Modeling Languages, Spreadsheets and Numerical Computing

Software 55
9.1 AMPL Client: Hooking AMPL to Solvers 56
9.1.1 Using OSAmplClient for a Local Solver 56
9.1.2 Using OSAmplClient to Invoke an OS Solver Server 57
9.1.3 AMPL Summary 58

9.2 GAMS and Optimization Services i 58
9.2.1 Using GAMS to Invoke the Local OS Solver Service Coin0S 59
9.2.2 Using GAMS to Invoke a Remote OS Solver Service 60
9.2.3 GAMS Summary: e e e 63

9.3 MATLAB: Using MATLAB to Build and Run OSiLL Model Instances 65
10 The OS Library Components 69
10.1 OSAgent o o e 69
10.2 OSCommonlnterfaces 70
10.2.1 The OSInstance Class o i 70
10.2.2 Creating an 0SInstance Object, 70
10.2.3 Mapping Ruleso 70
10.2.4 The OSExpressionTree OSnLNode Classes 73
10.2.5 The OSOption Classo o it 75
10.2.6 The OSResult Class e 75

10.3 OSModellnterfaces e 75
10.3.1 Converting MPS Files 75
10.3.2 Converting AMPL nl Files. 75

10.4 OSParsers o o e e 76
10.5 OSSolverInterfaces 7

10.6 OSUtIls o o e

11 The OSInstance API
11.1 Get Methods e
11.2 Set Methods e
11.3 Calculate Methods e
11.4 Modifying an 0SInstance Object o
11.5 Printing a Model for Debugging L o L

12 Code samples to illustrate the OS Project
12.1 Algorithmic Differentiation: Using the OS Algorithmic Differentiation Methods . . .
12.2 Instance Generator: Using the OSInstance API to Generate Instances
12.3 branchCutPrice: Using Bep oo
12.4 OSModificationDemo: Modifying an In-Memory 0SInstance Object
12.5 OSSolverDemo: Building In-Memory Solver and Option Objects
12.6 OSResultDemo: Building In-Memory Result Object to Display Solver Result
12.7 OSCglCuts: Using the OSInstance API to Generate Cutting Planes
12.8 OSRemoteTest: Calling a Remote Server
12.9 OSJavalnstanceDemo: Building an OSiL Instance in Java
12.10Using Dip (Decomposition In Integer Progamming)
12.10.1 Building and Testing the OS-Dip Example
12.10.2 The OS Dip Solver — Code Description and Key Classes
12.10.3 User Requirements
12.10.4 Simple Plant/Lockbox Location Example
12.10.5 Generalized Assignment Problem Example
12.10.6 Defining the Problem Instance and Blocks
12.10.7 The Dip Parameter File
12.10.8Issues to Fix Lo
12.10.9 Miscellaneous Issues Lo

13 Setting Options
13.1 template Lo

14 The OS Algorithmic Differentiation Implementation
14.1 Algorithmic Differentiation: Brief Review
14.2 Using OSInstance Methods: Low Level Calls
14.2.1 First Derivative Reverse Sweep Calculations
14.2.2 Second Derivative Reverse Sweep Calculations
14.3 Using OSInstance Methods: High Level Calls
14.3.1 Sparsity Methods L
14.3.2 Function Evaluation Methods
14.3.3 Gradient Evaluation Methods
14.3.4 Hessian Evaluation Methods 0.

15 File Upload: Using a File Upload Package

16 Wish List for Next Release

79
79
80
80
81
82

82
83
84
85
85
85
89
89
90
90
91
92
93
94
94
97
98
100
101
102

102
103

103
103
104
107
108
109
109
110
112
113

113

114

17 Appendix — Sample OSiL files 116

17.1 OSiL representation for problem given in (1)—(4) (p.31) 116
17.2 OSIiL representation for problem given in (34)—(37) (p.104) 118
Bibliography 119

List of Figures

0O UL W

The OS distribution root directory. 11
The OS directory. e e 30
The <variables> element for the example (1)—(4). 32
The Variables complexType in the OSiLL schema. 32
The Variable complexType in the OSiL schema. 33
The <linearConstraintCoefficients> element for constraints (2) and (3). 34
The <quadraticCoefficients> element for constraint (2). 34
The <nl> element for the nonlinear part of the objective (1). 35
Aldocal call to solve. 40
A remote call to solve. 42
Downloading the instance from a remote source. 43
The OS Communication Methods, 50
Creating an 0SInstance Object 70
The 0SInstance class o e 71
The InstanceDataclass e 71
The <variables> element as an 0SInstance object 72
Conceptual expression tree for the nonlinear part of the objective (1). 73
The function calculation method for the plus node class with polymorphism 73
A sample OSoL file — SPLl.osol 99
A sample OSoL file - SPL1.osol (Continued) 120

List of Tables

S U W N

Tested Platforms for Solvers 28
Platform Description oL o 28
Solver configurations L L 37
Default solvers oL e 37
Data for a 3 plant, 5 customer problem 95
Data for a three plant, three customer problem, 96

1 The Optimization Services (OS) Project

The objective of Optimization Services (OS) is to provide a general framework consisting of a set
of standards for representing optimization instances, results, solver options, and communication
between clients and solvers in a distributed environment using Web Services. This COIN-OR
project provides source code for libraries and executable programs that implement OS standards.
See the COIN-OR Trac page http://projects.coin-or.org/0S or the Optimization Services
Home Page http://www.optimizationservices.org for more information.

Like other COIN-OR projects, OS has a versioning system that ensures end users some degree
of stability and a stable upgrade path as project development continues. The current stable version
of OS is 2.4, and the current stable release is 2.4.0, based on trunk version 4340.

The OS project provides the following:

1. A set of XML based standards for representing optimization instances (OSiL), optimization
results (OSrL), and optimization solver options (OSoL). There are other standards, but these
are the main ones. The schemas for these standards are described in Section 6.

2. Open source libraries that support and implement many of the standards.

3. A robust solver and modeling language interface (API) for linear and nonlinear optimization
problems. Corresponding to the OSiLL problem instance representation there is an in-memory
object, 0SInstance, along with a collection of get (), set (), and calculate() methods for
accessing and creating problem instances. This is a very general API for linear, integer, and
nonlinear programs. Extensions for other major types of optimization problems are also in
the works. Any modeling language that can produce OSiL can easily communicate with any
solver that uses the OSInstance API. The 0SInstance object is described in more detail in
Section 11. The nonlinear part of the API is based on the COIN-OR project CppAD by Brad
Bell (http://projects.coin-or.org/CppAD) but is written in a very general manner and
could be used with other algorithmic differentiation packages. More detail on algorithmic
differentiation is provided in Section 14.

4. A command line executable 0SSolverService for reading problem instances (OSiL format,
AMPL nl format, MPS format) and calling a solver either locally or on a remote server. This
is described in Section 7.

5. Utilities that convert AMPL nl files and MPS files into the OSiL XML format. This is
described in Section 10.3.

6. Standards that facilitate the communication between clients and optimization solvers using
Web Services. In Section 10.1 we describe the 0SAgent part of the OS library that is used to
create Web Services SOAP packages with OSilL instances and contact a server for solution.

7. An executable program 0SAmplClient that is designed to work with the AMPL modeling
language. The 0SAmplClient appears as a “solver” to AMPL and, based on options given in
AMPL, contacts solvers either remotely or locally to solve instances created in AMPL. This
is described in Section 9.1.

8. Server software that works with Apache Tomcat and Apache Axis. This software uses Web
Services technology and acts as middleware between the client that creates the instance and
the solver on the server that optimizes the instance and returns the result. This is illustrated
in Section 8.

9. A lightweight version of the project, 0SCommon, for modeling language and solver developers
who want to use OS API, readers and writers, without the overhead of other COIN-OR
projects or any third-party software. For information on how to download 0SCommon see
Section 3.5.

2 Quick Roadmap
If you want to:

e Download the OS source code or binaries — see Section 3.
e Download just the OS API, readers and writers — see Section 3.5.
e Build the OS project from the source code — see Section 12.10.1.

e Use the OS library to build model instances or use solver APIs — see Sections 10.3, 10.5
and 11.

e Use the OSSolverService to read files in nl, OSiL, or MPS format and call a solver locally or
remotely — see Section 7.

e Use AMPL to solve problems either locally or remotely with a COIN-OR solver, Cplex,
GLPK, or LINDO - see Section 9.1.

e Use GAMS to solve problems either locally or remotely — see Section 9.2.
e Build a remote solver service using Apache Tomcat — see Section 8.

e Use MATLAB to generate problem instances in OSiL. format and call a solver either remotely
or locally — see Section 9.3.

e Use the OS library for algorithmic differentiation (in conjunction with COIN-OR CppAD) —
see Section 14.

e Use modeling languages to generate model instances in OSiL. format — see Section 9.

3 Downloading the OS Project

The OS project is an open-source project with source code under the Common Public License (CPL).
See http://www.ibm.com/developerworks/library/os-cpl.html. This project was initially cre-
ated by Robert Fourer, Jun Ma, and Kipp Martin. The code has been written primarily by Horand
Gassmann, Jun Ma, and Kipp Martin. Horand Gassmann, Jun Ma, and Kipp Martin are the
COIN-OR project leaders and active developers for the OS project. Most users will only be inter-
ested in obtaining the binaries, which we describe in Section 3.1. The remaining sections of this
chapter deal with obtaining the source code for the project, which will be of interest mostly to
developers.

3.1 Obtaining the Binaries

If the user does not wish to compile source code, the OS library, OSSolverService executable and
Tomcat server software configuration are available in binary format for some operating systems.
The repository is at http://www.coin-or.org/download/binary/0S/. Unlike the source code
described in Section 3.3, the binary files are not subject to version control and can be downloaded
using an ordinary browser. If binaries are not provided for a particular operating system, it may be
possible to build them from the source code. Since the source is under version control, this requires
svn. (See Sections 3.2.1, 3.3 and 12.10.1.

The binary distribution for the OS library and executables follows the following naming con-
vention:

0S-version_number-platform-compiler-build_options.tgz (zip)

For example, OS Release 2.1.0 compiled with the Intel 9.1 compiler on an Intel 32-bit Linux system
is:

0S-2.1.0-1inux-x86-icc9.1.tgz

For more detail on the naming convention and examples see:
https://projects.coin-or.org/CoinBinary/wiki/ArchiveNamingConventions

After unpacking the tgz or zip archives, the following folders are available.
bin — this directory has the executables 0SSolverService and 0SAmplClient.
include — the header files that are necessary in order to link against the OS library.
lib — the libraries that are necessary for creating applications that use the OS library.
share — license and author information for all the projects used by the OS project.

Files are also provided for an Apache Tomcat Web server along with the associated Web service
that can read SOAP envelopes with model instances in OSiL format and/or options in OSoL
format, call the 0SSolverService, and return the optimization result in OSrL format. The naming
convention for the server binary is

0S-server-version_number.tgz (.zip)
For example, the files associated with OS server release 2.0.0 are in the binary distribution
0S-server-2.0.0.tgz

There is no platform information given since the server and related binaries were written in Java.
The details and use of this distribution are described in Section 8.

Finally for Windows users we provide Visual Studio project files (and supporting libraries and
header files) for building projects based on the OS library and libraries used by the OS project.
The binary for this is named

0S-version_number-VisualStudio.zip
For example, the necessary files associated with OS stable 2.4 are in the binary distribution
0S-2.1-VisualStudio.zip

The binaries provided are based on Visual Studio Express 2008. See Section 4.2.2 for more detail.

3.2 Auxiliary Software for Working with the OS Project

Compiling and modifying the OS project source code can be a daunting task, made somewhat
easier by the inclusion of configure scripts and makefiles in the distribution of the source. However,
additional software packages are sometimes needed or convenient, especially on Windows. We
collect in this section a number of recommended packages that we ourselves use in the development
and maintenance of the code.

3.2.1 Subversion (SVN)

The Subversion version control package is used to obtain the C++ source code. Users with Unix
operating systems will most likely have a command line svn client. If an svn client is not present,
see http://subversion.tigris.org to download an svn client. For Windows users we recom-
mend the svn client TortoiseSVN. (See http://tortoisesvn.tigris.org.) Upon installation the
TortoiseSVN client is integrated within the Windows Explorer.

3.2.2 wget

Certain third-party software (see Section 4.5) is available in source form but is not contained in
the OS project distribution. Scripts are included to download this code using the wget executable.
A Windows version of wget is available at

http://www.christopherlewis.com/WGet/wget-1.11.4b.zip

There is no need to rebuild the code locally, which relies on several levels of other software.

3.2.3 Windows development platform

A development platform is essential for users on Windows. OS Project provides support for
Microsoft Visual Studio (see Section 4.2.1) and several unix emulators, including Cygwin (Sec-
tion 4.2.3), MinGW (Section 4.2.4) and MSYS (Section 4.2.5). Download instructions for all of
these packages are included in the sections indicated.

3.2.4 CH+4 compiler

A C++ compiler is needed to compile the OS source. This should be present under all unix instal-
lations. If no C4++ compiler is available on the system, the free gcc compiler can be downloaded
from http://gcc.gnu.org.

Microsoft Visual Studio can be configured with the Microsoft c1 compiler, which also works
under MSYS. MinGW and Cygwin are normally configured with the Gnu compiler collection (gcc),
although they can also be used with the c1 compiler. However, extreme care is needed if the last
option is followed. gcc and c1 have very different header files, and it is important to set up the
$PATH variable correctly in order not to confuse the header files. In our experience, best results are
achieved with the minimal unix-like installation, MSYS, and the Microsoft c1 compiler.

3.2.5 Fortran Compiler

The COIN-OR project Ipopt (see Section 4.4) and several of the third-party software described in
Section 4.5 include Fortran subroutines, which must be compiled with a Fortran compiler if the user
wants to include these projects in the build. A free Fortran 95 compiler can be downloaded from
http://www.g95.0rg. For Fortran 77 code (which includes the Blas, HSL and Lapack projects —

but not Mumps) it might be sufficient to download the £2¢ translator which turns Fortran 77 code
into code that can subsequently be fed into a C compiler. The f2c translator and the f2c¢ runtime
library can be downloaded from http://www.netlib.org/f2c. Further details are available in the
file BuildTools/compile_f2c/INSTALL, which is part of the OS distribution.

3.2.6 flex and bison

Users who want to edit the source code in the parsers described in Section 10.4 will need the
additional tools flex and bison. These can be downloaded from

http://sourceforge.net/project/showfiles.php?group_id=2435&package_id=67879
and are listed at the Web site as

bison-2.3-MSYS-1.0.11-1
flex-2.5.33-MSYS-1.0.11-1
regex-0.12-MSYS-1.0.11-1

The last file contains an important DLL, msys-regex-0.dll, without which flex will not start.

3.2.7 doxygen

Doxygen (http://www.doxygen.org) is a document production system that can be used to prepare
documentation for the OS project and related software. For details, see Section 4.7.

3.3 Obtaining OS Source Code Using Subversion (SVN)

For the rest of this documentation, we assume that the name of the root directory of the OS
project distribution is COIN-0S. The COIN-0S directory structure is illustrated in Figure 1. OS
source code is mainly contained inside of the OS subdirectory. Other first level subdirectories are
mostly external projects (COIN-OR or third-party) that the OS project depends on.

For Users on a Unix system such as Linux, Solaris, Mac OS X, etc., the source code is obtained
as follows. In a command window execute:

svn co https://projects.coin-or.org/svn/0S/releases/2.3.0 COIN-0S

It is possible that on some systems you may get a message such as:

Error validating server certificate for ’https://projects.coin-or.org:443’:

- The certificate is not issued by a trusted authority. Use the

fingerprint to validate the certificate manually!

Certificate information:

- Hostname: projects.coin-or.org

- Valid: from Jun 10 22:51:18 2007 GMT until Jun 15 21:00:28 2009 GMT

- Issuer: 07969287, http://certificates.godaddy.com/repository, GoDaddy.com, Inc.,
Scottsdale, Arizomna, US

- Fingerprint: £7:26:0f:bb:e1:94:a5:23:7f:5c:cb:c3:9a:¢c4:74:51:e5:¢7:4d:29
(R)eject, accept (t)emporarily or accept (p)ermanently?

If so, select (p) and you should not get this message again.

10

-

COIN-O5

— -
BuildTools
-

"l:bc
Cagl

.
m—
CainUtils
——————"
éﬁpad
———
.i:.)ala
=
dékydﬂc
=
5yLP
=
Ipopt
m—

-——

05

i:)si
—
SYI&IIF*HGNY
-

ThirdParty

—

aoc
—
ex.é. mples
—

ing

md
—
MSVisualStudio
——
Sﬂur:IEmES
=
e
———
sl'.'_-.-'.lle.sheets
—

test

Vol

—

wsdl

Figure 1: The OS distribution root directory.

11

For more information on downloading the OS project or other COIN-OR projects using SVN
see

http://projects.coin-or.org/BuildTools/wiki/user-download#DownloadingtheSourceCode.
p://proj g g

On Windows with TortoiseSVN, create a directory COIN-0S in the desired location and right-
click on this directory. Select the menu item SVN Checkout ... and in the textbox “URL of
Repository” give the URL for the version of the OS project you wish to check out, for instance,

https://projects.coin-or.org/svn/0S/stable/2.3.
Now build the project as described in Section 12.10.1.

The Java source code for setting up a solver service with Apache Tomcat is checked out as
follows:

svn co https://projects.coin-or.org/svn/0S/branches/0Sjava 0SJava

For more detail on running a Tomcat solver service see Section 8.

3.4 Obtaining the OS Source Code From a Tarball or Zip File

The OS source code can also be obtained from either a tarball or zip file. This may be preferred for
users who are not managing other COIN-OR projects and wish to only work with periodic release
versions of the code. In order to obtain the code from a Tarball or Zip file do the following.

Step 1: In a browser open the link http://www.coin-or.org/download/source/0S/. Listed at
this page are files in the format:

0S-release_number.tgz

0S-release_number.zip
Step 2: Click on either the tgz or zip file and download to the desired directory.
Step 3: Unpack the files. For tgz do the following at the command line:

gunzip 0S-release_number.tgz
tar -xvf 0S-release_number.tar

Windows users should be able to double-click on the file 0S-release_number.zip and
have the directory unpacked.

Step 4: (optional) Move the folder 0S-release_number to the desired location and rename it to
COIN-0S.

Now build the project as described in Section 12.10.1.

12

3.5 Obtaining source for the OS Project API

The OS project is very extensive and relies on many other COIN-OR projects. This may not
be desirable for modeling language and solver developers who just wish to use the OS API in
conjunction with their modeling language or solver. Hence there is also an “OS lite” download that
consists of all the code for the OS API and for reading and writing instance and solution files. We
refer to this version of the project as 0SCommon. To get the current version of 0SCommon use the
svn command

svn co https://projects.coin-or.org/svn/0S/branches/0Scpp/0SCommon 0SCommon

4 Building and Testing the OS Project

Once the OS source code is obtained, the OS libraries, 0SSolverService executable, and test
examples can be built. We describe how to do this on Unix/Linux systems (see Section 4.1) and
on Windows (see Section 4.2).

4.1 Building the OS Project on Unix/Linux Systems

In order to build the OS project on Unix/Linux systems do the following.
Step 1: Connect to the OS distribution root directory (COIN-0S in Figure 1).

Step 2: Run the configure script that will generate the makefiles. If you are running on a machine
with a Fortran 95 compiler present (e.g., gfortran), and you have previously downloaded
the third-party software packages BLAS and Mumps (see Section 4.4), run the command

./configure
otherwise use
./configure COIN_SKIP_PROJECTS="Ipopt Bonmin"

as COIN-OR’s Ipopt and Bonmin projects currently use Fortran to compile some of its
dependent libraries.

Notes:

e If gfortran is not present and you wish to build the nonlinear solver Ipopt see the
instructions in Section 4.4.

e When using configure you may wish to use the -C option. This instructs configure
to use a cache file, config.cache, to speed up configuration by remembering and
reusing the results of tests already performed.

e For more information and options on the ./configure script see
https://projects.coin-or.org/BuildTools/wiki/user-configure#PreparingtheCompilation.

e You cannot apply COIN_SKIP_PROJECTS to Cbc, Clp, Cgl, CoinUtils, or Osi. These
projects must be present.

13

Step 3: Run the make files.

make

Step 4: Run the unitTest.

make test

Depending upon which third-party software you have installed, the result of running the
unitTest should look something like (we have included the third-party solver LINDO in
the test results below; it is not part of the default build):

HERE ARE THE UN

Solved problem
Solved problem
Solved problem
Solved problem
Solved problem
Solved problem
Solved problem
Solved problem
Solved problem
Solved problem
Solved problem
Solved problem
Solved problem
Solved problem
Solved problem
Solved problem
Solved problem
Test the MPS ->

IT TEST RESULTS:

avion2.o0sil with Ipopt
HSO71.0sil with Ipopt
rosenbrockmod.osil with Ipopt
parincQuadratic.osil with Ipopt
parincLinear.osil with Ipopt
callBack.osil with Ipopt
callBackRowMajor.osil with Ipopt
parincLinear.osil with Clp
p0033.0sil with Cbc
p0033.0sil with SYMPHONY
parincLinear.osil with DyLP
volumeTest.osil with Vol
p0033.0sil with GLPK
lindoapiaddins.osil with Lindo
rosenbrockmod.osil with Lindo
parincQuadratic.osil with Lindo
wayneQuadratic.osil with Lindo
0SiL converter on parinc.mps using Cbc

Test the AMPL nl -> 0Sil converter on hs71.nl using LINDO

Test a problem
Successful test
Successful test
Successful test
Successful test
Successful test

All tests compl

written in b64 and then converted to OSInstance
of 0SiL parser on problem parincLinear.osil
of OSrL parser on problem parincLinear.osrl
of prefix and postfix conversion routines on problem rosenbrockmod.osil
of all of the nonlinear operators on file testOperators.osil
of AD gradient and Hessian calculations on problem CppADTestLag.osil

eted successfully

If you do not see

A1l tests completed successfully

then you have not passed the unitTest and hopefully some semi-intelligible error message

was given.

Step 5: Install the libraries and executables.

14

make install

This will install all of the libraries in the 1ib directory. In particular, the main OS
library 1ib0S along with the libraries of the other COIN-OR projects that download with
the OS project will get installed in the 1ib directory. In addition the make install
command will install several executable programs in the bin directory, depending on the
parameters on the configure command. One of these binaries is 0SSolverService which
is the main OS project executable. This is described in Section 7. In addition Clp,
Cbc, Ipopt, Bonmin, Couenne and SYMPHONY get installed in the bin directory. Necessary
header files are installed in the include directory. In this case, bin, 1ib and include
are all subdirectories of where ./configure is run. If the user wants these files installed
elsewhere, then configure should specify the prefix of these directories. That is,

./configure --prefix=prefixDirectory COIN_SKIP_PROJECTS="Ipopt Bonmin"
For example, running

./configure --prefix=/usr/local COIN_SKIP_PROJECTS="Ipopt Bonmin"

and then running make and make install will put the relevant files in

/usr/local/bin
/usr/local/include
/usr/local/lib

Run an Example! If make test works, proceed to Section 7 to run the key executable,
0SSolverService.

4.1.1 Building the OS Project on Mac OS X

When building OS on Mac OS X 10.5.x (Leopard) it may be necessary to add the following to the
configure line

ADD_CXXFLAGS="-mmacosx-version-min=10.4"
ADD_CFLAGS="-mmacosx-version-min=10.4"
ADD_FFLAGS="-mmacosx-version-min=10.4"
LDFLAGS="-flat_namespace"

Also, the Mac OS X operating system does not come configured with the gcc compiler. Users
wanting to build the OS project on the Mac should do the following;:

e Install the Xcode developer tools. These are available on the install DVD that comes with
the machine or at the Apple developer site. See

http://developer.apple.com/technology/xcode.html

15

e Install a Fortran compiler. We have had good luck with the GNU gfortran compiler. Plat-
form specific binaries for the various Mac platforms (Leopard and Tiger, Intel and Power PC)
are obtained at

http://hpc.sourceforge.net/

We followed the instructions and installed the binary using the command
sudo tar -xvf gcc-bin.tar -C /

We have also successfully used the fink project, see
http://www.finkproject.org/
to download and build gee/g++/gfortran compilers from source code.

4.2 Building the OS Project on Windows

There are a number of options open to Windows users. First, if you wish to work with source code
we recommend downloading the svn client, TortoiseSVN. (See Section 3.2.1.) With TortoiseSVN
in the Windows Explorer connect to the directory (e.g., COIN-OS) where you wish to put the OS
code. Right-click on the directory and select SVN Checkout. In the textbox, URL of Repository
give the URL for the version of the OS project you wish to check out, e.g.,

https://projects.coin-or.org/svn/0S/stable/2.3.

Also, if you plan to build any of the projects contained in ThirdParty (e.g., ASL) we recommend
using wget. (See Section 3.2.2.)

4.2.1 Microsoft Visual Studio (MSVS)

Microsoft Visual Studio solution and project files are provided for users of Windows and the Mi-
crosoft Visual Studio IDE. We currently support Versions 8 and 9. These versions are also sometimes
referred to by their (approximate) release dates, which is 2008 for Version 9 and 2005 for Version 8.
In addition there is a free version of the Visual Studio IDE C++ compiler, called Visual C++
Express Edition.

The following steps are necessary to build the OS project using the Microsoft Visual Studio
IDE.

Step 0. If the C++ compiler cl is already installed, go to to Step 2.

Step 1. Download and install the Visual C++ Express Edition, which is available for free at Mi-

crosoft’s web site. Version 9is at http://www.microsoft.com/express/download/#webInstall.

This download contains the Microsoft c1 C++ compiler along with necessary libraries.

Step 2. The part of the OS library responsible for communication with a remote server depends
on some underlying Windows socket header files and libraries. These files are part of the
commercial for-pay version, but are not included in the Visual C++ Express download. If
you have the Express Edition, it is necessary to also download and install the Windows
Platform SDK, which can be found at

http://www.microsoft.com/downloads/details.aspx?FamilyID=E6E1C3DF-A74F-4207-8586-711EBE331CDC&displaylang=en.

16

Step 3. In the COIN-OR/OS directory you will find the folder MSVisualStudio, which contains
root directories organized by the version of Visual Studio. We currently provide solution
files for Version 8 and Version 9. Each contains the file 0S.s1ln and project files for building
the unitTest (0STest.vcproj), the OSSolverService (0SSolverService.vcproj) and the
OS libraries (1ib0SCommon.vcproj and (1ib0SSolvers.vcproj). The Microsoft Visual
Studio files are automatically downloaded with an SVN checkout. They are also contained
in the tarballs (see Section 3.4).

Open the solution file or the individual project files (for instance by double-clicking on
them in Windows Explorer) and select Build from the menu bar.

Step 4. Run the unitTest. Connect to the directory COIN-OR/0S/test and run either the release
or debug version of the unitTest executable.

The solution file 0S.sln contains two configurations, Debug and Release, both of which are
configured without Ipopt.

4.2.2 Visual Studio Examples Distribution

Many users will not be interested in actually building the OS project from source code. At the link
https://projects.coin-or.org/CoinBinary/browser/binary/0S are binaries for using the OS
project. There are also Visual Studio project files for building applications that use the precompiled
OS libraries. In particular, download and unpack the file

0S-version_number-VisualStudio.zip

This zip archive contains a bin directory that holds the executable 0SSolverService.exe. The
0SSolverService.exe is configured to run, out-of-the-box, the following solvers.

e Bonmin
e Clp
e Chc

e Couenne

DyLP

Ipopt
SYMPHONY

e Vol

The libraries necessary to run these solvers are included in the download. No additional soft-
ware is necessary to solve models with these solvers! See Section 7 for details on how to use the
0SSolverService.exe executable for solving optimization problems.

The bin directory also contains the 0SAmplClient.exe executable. If the user has a Windows
version of AMPL, then AMPL can be used to invoke all of the solvers mentioned a